A search for massless dark photons in positronium decays

3rd Jagiellonian symposium on Fundamental and Applied Subatomic Physics, Krakow (2019)

Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics
Dark Matter: Astro + Cosmology through **Gravitational effects**

GALACTIC ROTATION CURVES

GRAVITATIONAL LENSING

COSMIC MICROWAVE BACKGROUND

ΛCDM (Lambda Cold Dark Matter)

- Dark Energy: 68%
- Standard Model: 27%
- Dark Matter: 5%
Interaction DM-SM other than gravity? If so very weak…

Only gravitationally? Nightmare scenario from a particle physicist point of view.

\[\Omega_{DM} \sim 5\Omega_{SM} \]

Relic densities of Standard Matter (SM) and Dark Matter (DM) are “similar”

SUGGESTS COMMON ORIGIN BETWEEN SM and DM.

Can those be related with A SINGLE THEORY?
The vector portal - Dark photons

FOCUS OF THIS TALK

NEW FORCE CARRIED BY A NEW VECTOR BOSON: DARK PHOTON
Signatures for Dark Photons at Fixed target exp. (NA64@CERN)

Visible Decay Mode $m'_A < 2m_X$

- Pair production of SM particles

NA64, Phys. Rev. Lett. 120, 231802 (2018)

Invisible Decay Mode $m'_A > 2m_X$

- Missing Energy/momentum

NA64, Phys. Rev. Lett. 118, 011802 (2017),
NEW: arXiv:1906.00176
The Massless Dark photon case - the Mirror Sector

Parity violation in weak interaction

The Massless Dark photon case - the Mirror Sector

Parity violation in weak interaction

W. Pauli in a letter to V. Weisskopf,
"Now after the first shock is over, I begin to collect myself. Yes, it was very dramatic."
Is Nature left-right asymmetric?

- In the standard model parity violation introduced from beginning in the Lagrangian.

\[
\begin{pmatrix}
 v_l \\
 l_l \\
 u_R \\
 d_R
\end{pmatrix}, \quad \begin{pmatrix}
 l_l \\
 u_R
\end{pmatrix}, \quad \begin{pmatrix}
 u_l \\
 d_R
\end{pmatrix}, \quad u_R, d_R
\]

- Is nature really left-right asymmetric or do we happen to live in a universe dominated by particles with such properties?

1. Left-right symmetric models, symmetry restored at higher energies (V+A suppressed by heavy W_R mass)

2. Postulation of the existence of a sector of mirror particles
 Lee and Yang, Phys. Rev. 104, 4 (1956)
The mirror sector

Ordinary particle sector

<table>
<thead>
<tr>
<th>e</th>
<th>e'</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>ν'</td>
</tr>
<tr>
<td>p</td>
<td>p'</td>
</tr>
<tr>
<td>n</td>
<td>n'</td>
</tr>
<tr>
<td>ħe</td>
<td>ħe'</td>
</tr>
<tr>
<td>ν</td>
<td>ν'</td>
</tr>
<tr>
<td>āp</td>
<td>āp'</td>
</tr>
<tr>
<td>ān</td>
<td>ān'</td>
</tr>
<tr>
<td>W, Z</td>
<td>W', Z'</td>
</tr>
<tr>
<td>γ</td>
<td>γ'</td>
</tr>
</tbody>
</table>

Mirror particle sector

→ Mirror particles: same properties of ordinary particles but chirality of fields inverted.
→ Same micro-physics governs interactions among mirror particles but they experience V+A weak interaction.
If such a sector of particle exists
→ mirror symmetry conserved
→ left-right symmetry of nature restored

The mirror sector

If such a sector of particle exists
→ mirror symmetry conserved
→ left-right symmetry of nature restored

- Doubling the number of elementary particles to solve problems seems to be unnatural … but … it has been done before!
- Relativity + QM ⇒ anti-matter
The mirror sector would interact through gravitation with us. → Mirror particles (stable and massive) are very good dark matter candidates.
The mirror sector could interact through photon mirror-photon kinetic mixing:

→ Implications for cosmology.

→ Bounds (LSS, CMB, BBN): mixing strength $\epsilon < 3 \times 10^{-8}$

Positronium as a portal to the Mirror sector

Coupling between oPs and oPs’ ⇒ breaking of degeneracy

\[o-Ps^+ = \frac{1}{\sqrt{2}} (o-Ps^+ + o-Ps^{'}) \]
\[o-Ps^- = \frac{1}{\sqrt{2}} (o-Ps^- - o-Ps^{'}) \]

\[\Delta E = 2 h \varepsilon \nu \]

Energy splitting

Rabi oscillation:

\[P(o-Ps \rightarrow o-Ps^{'}) = \sin^2(2\pi \varepsilon \nu t) \]
Experimental signature: \(\text{oPs} \rightarrow \text{invisible decay (missing energy)} \)

Standard model decay:

\[\text{o-Ps} \rightarrow 3\gamma \]

→ energy deposition of 1022 keV (Ps mass, \(E = mc^2 \))
Invisible decay: o-Ps → oPs' → $3\gamma'$
→ no energy deposition (event compatible with 0 energy)
Search for oPs → invisible decay (aerogel experiment)

No events in the signal region
→ Upper bound : $\text{Br}(\text{oPs} \rightarrow \text{invisible}) \leq 4.2 \times 10^{-7}$
→ Stringent limit on physics beyond the standard model

o-Ps → 3γ
→ $E_{\text{SUM}} = 1022$ keV
Search for oPs → invisible decay (aerogel experiment)

Aerogel target, SiO2 grains 100 nm

Collisions with matter destroy coherence of oscillation suppressing $o-Ps - o-Ps'$ conversion $\sim \sqrt{N_{\text{coll}}}$.

Has to be taken into account (large systematic uncertainty)

\rightarrow limit on $\epsilon \leq 1.5 \times 10^{-7}$
Search for oPs → invisible decay in a vacuum cavity

- Ps mean free path in a vacuum cavity: 30 mm → 1-2 collision instead of 10^4
- Cross check: change Ps velocity ~ N_{coll} Number of signal 2 times smaller without affecting the background!

P. Crivelli et al., JINST 5, P08001 (2010)

Positron beam + Hermetic gamma detector
Low energy positron beam - tagging

C. Vigo, L. Gerchow, L. Liszkay, A. Rubbia, and P. Crivelli

Coincidence with positron bunching and detection of secondary electrons

Flat background from accidental triggers \(\sim 10^{-4} \)
mainly e- from target at HV not correlated with e+
Positron-positronium converter - porous SiO$_2$

Ps mean energy $\sim 1/(e^+ \text{ implantation energy})$

$N_{\text{collisions}} \sim 1/(e^+ \text{ implantation energy})$

$\tau_{\text{oPs, vac}} = 142$ ns

Porous Silica thin film
$\sim 1\mu$m, 3-4 nm pore size

Few keV

Detection of annihilation photons

ECAL: 20X₀ @ 511 keV

- Energy losses and hermeticity <10⁻⁷
- Main limitation: positronium/positron escaping the detection region ≈ 10⁻⁵
oPs → invisible decay in a vacuum cavity - first results (2018)

- First results: no excess above expected background observed
 - limit similar to aerogel experiment but without systematic related to collisions.

- Main limitations: accidental triggers, positronium escaping the detection region

Setup Improvement

- e⁺ flux improved by 1 order of magnitude (W meshes cryogenic moderator)
- Redesign of vacuum cavity to reduce e⁻ emission due to HV
Time distribution of positrons on target

Time distribution of events compatible with 0-energy
Shape of signal or signal-like background driven by e+ arrival on target
Ps escaping detection region $\sim 1/E_{e^+}$
\rightarrow lowest energy points (sidebands)
\rightarrow estimation irreducible background

Bayes theorem for signal branching ratio

No excess of events for 4.6×10^7 Ps decays

$BR(o-Ps \rightarrow o-Ps' \rightarrow \text{invisible}) < 4.0 \times 10^{-5}$

Mixing strength $\gamma - \gamma' \quad \epsilon < 5.8 \times 10^{-8}$
Summary and Outlook

- Latest results: no excess above expected background observed → for the first time limit comparable to contraints from cosmology.

- Main limitations: accidental triggers, positronium escaping the detection region

Possible improvements

- Higher e^+ flux (Neon moderator) and better energy spread (Ni/W remoderator)
- Implementation of 10-20 nm carbon foil to block Ps escaping the detection region

- GOAL: reach a sensitivity on mixing strength of $\epsilon \sim 10^{-9}$
 (not excluded by cosmology, motivated by BSM theories, cross check DAMA claim….)

![Diagram showing o-Ps: 1) escaping the detection region, 2) decaying inside the ECAL.](image)
Acknowledgments

THANK YOU SO MUCH FOR YOUR ATTENTION!

ETH Zurich group:
Prof. André Rubbia, Balint Radics and Lars Gerchow
Undergraduate Students: Mark Raaijmakers, Alessandro Battaglioni and Hevjin Yarar

Former members: David Cooke and Carlos Vigo

A special thank to Sergei Gninenko, Alexander Belov, Laszlo Liszkay, Rich Vallery and Flip Tanedo (for letting me adapt some of his slides)

Grant No. ETH-35-14-2

ETHZ- IPA

Paolo Crivelli | 19.02.2018 | 27